Name and explain the theory that allows scientists to predict the shape of a molecule? How do scientists determine the type of bonds present in a chemical compound? The Lewis electron-pair approach can be used to predict the number and types of bonds between the atoms in a

Name and explain the theory that allows scientists to predict the shape of a molecule?

How do scientists determine the type of bonds present in a chemical compound?

The Lewis electron-pair approach can be used to predict the number and types of bonds between the atoms in a substance, and it indicates which atoms have lone pairs of electrons. This approach gives no information about the actual arrangement of atoms in space, however. We continue our discussion of structure and bonding by introducing the valence-shell electron-pair repulsion (VSEPR) model (pronounced “vesper”), which can be used to predict the shapes of many molecules and polyatomic ions. Keep in mind, however, that the VSEPR model, like any model, is a limited representation of reality; the model provides no information about bond lengths or the presence of multiple bonds.

The VSEPR Model

The VSEPR model can predict the structure of nearly any molecule or polyatomic ion in which the central atom is a nonmetal, as well as the structures of many molecules and polyatomic ions with a central metal atom. The premise of the VSEPR theory is that electron pairs located in bonds and lone pairs repel each other and will therefore adopt the geometry that places electron pairs as far apart from each other as possible. This theory is very simplistic and does not account for the subtleties of orbital interactions that influence molecular shapes; however, the simple VSEPR counting procedure accurately predicts the three-dimensional structures of a large number of compounds, which cannot be predicted using the Lewis electron-pair approach.

Linear, bent, trigonal pyramidal, trigonal planar, T-shaped.

Figure 9.2.19.2.1: Common Structures for Molecules and Polyatomic Ions That Consist of a Central Atom Bonded to Two or Three Other Atoms. (CC BY-NC-SA; anonymous)

We can use the VSEPR model to predict the geometry of most polyatomic molecules and ions by focusing only on the number of electron pairs around the central atom, ignoring all other valence electrons present. According to this model, valence electrons in the Lewis structure form groups, which may consist of a single bond, a double bond, a triple bond, a lone pair of electrons, or even a single unpaired electron, which in the VSEPR model is counted as a lone pair. Because electrons repel each other electrostatically, the most stable arrangement of electron groups (i.e., the one with the lowest energy) is the one that minimizes repulsions. Groups are positioned around the central atom in a way that produces the molecular structure with the lowest energy, as illustrated in Figures 9.2.19.2.1 and 9.2.29.2.2.

GET HELP WITH YOUR HOMEWORK PAPERS @ 25% OFF

For faster services, inquiry about  new assignments submission or  follow ups on your assignments please text us/call us on +1 (251) 265-5102

Write My Paper Button

WeCreativez WhatsApp Support
We are here to answer your questions. Ask us anything!
👋 Hi, how can I help?
Scroll to Top